Sensitivity analysis for applied general equilibrium models in the presence of multiple Walrasian equilibria

نویسندگان

  • Marcus Berliant
  • Sami Dakhlia
  • S. Dakhlia
چکیده

Pagan and Shannon’s (1985) widely used approach employs local linearizations of a system of non-linear equations to obtain asymptotic distributions for the endogenous parameters (such as prices) from distributions over the exogenous parameters (such as estimates of taste, technology, or policy variables, for example). However, this approach ignores both the possibility of multiple equilibria as well as the problem (related to that of multiplicity) that critical points might be contained in the confidence interval of an exogenous parameter. We generalize Pagan and Shannon’s approach to account for multiple equilibria by assuming that the choice of equilibrium is described by a random selection. We develop an asymptotic theory regarding equilibrium prices, which establishes that their probability density function is multimodal and that it converges to a weighted sum of normal density functions. An important insight is that if a model allows multiple equilibria, say i = 1, . . . , I , but multiplicity is ignored, then the computed solution for the i -th equilibrium generally no longer coincides with the expected value of that i -th equilibrium. The error can be large and correspond to several standard deviations of the mean’s estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision Methods for Solving Systems of Walrasian Inequalities

We propose two algorithms for deciding if systems of Walrasian inequalities are solvable. These algorithms may serve as nonparametric tests for multiple calibration of applied general equilibrium models or they can be used to compute counterfactual equilibria in applied general equilibrium models defined by systems of Walrasian inequalities.

متن کامل

Two Algorithms for Solving the Walrasian Equilibrium Inequalities

We propose two algorithms for deciding if the Walrasian equilibrium inequalities are solvable. These algorithms may serve as nonparametric tests for multiple calibration of applied general equilibrium models or they can be used to compute counterfactual equilibria in applied general equilibrium models defined by the Walrasian equilibrium inequalities.

متن کامل

Sensitivity Analysis for Applied General Equilibrium Models in the Presence of Multiple Equilibria

Pagan and Shannon's (1985) widely used approach employs local linearizations of a system of non-linear equations to obtain asymptotic distributions for the endogenous parameters (such as prices) from distributions over the exogenous parameters (such as estimates of taste, technology, or policy variables, for example). However, this approach ignores both the possibility of multiple equilibria as...

متن کامل

Oligopoly with Capacity Constraints and Thresholds

    Abstract   Extended Oligopoly models will be introduced and examined in which the firms might face capacity limits, thresholds for minimal and maximal moves, and antitrust thresholds in the case of partial cooperation. Similar situation occurs when there is an additional cost of output adjustment, which is discontinuous at zero due to set-up costs. In these cases the payoff functions of the...

متن کامل

Evolution and Walrasian Behavior in Market Games

We revisit the question of price formation in general equilibrium theory. We explore whether evolutionary forces lead to Walrasian equilibrium in the context of a market game, introduced by Shubik (1972). Market games have Pareto inferior (strict) Nash equilibria, in which some, and possibly all, markets are closed. We introduce a strong version of evolutionary stable strategies (SESS) for fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999